Leaf water relations of Eucalyptus globulus ssp. globulus and E. nitens: seasonal, drought and species effects.

نویسندگان

  • D A White
  • C L Beadle
  • D Worledge
چکیده

In August 1990, a 2-ha plantation was established in an area where rainfall (about 515 mm year(-1)) was insufficient to meet evaporative demand. On nine occasions between September 1991 and April 1993, pressure-volume curves were constructed for irrigated and rainfed Eucalyptus globulus ssp. globulus Labill. and E. nitens (Deane and Maiden) Maiden trees. During the experiment, rainfed trees experienced six periods when predawn water potential was significantly lower than that of irrigated trees. In early spring of 1991 and 1992, osmotic potentials at full turgor and turgor loss point in the irrigated E. nitens were significantly lower than at other times of the year, probably because of winter hardening. Water stress reduced osmotic potential and increased bulk elastic modulus in E. nitens, whereas the reverse occurred in E. globulus. However, treatment differences with respect to changes in osmotic and elastic properties were commonly overshadowed by interspecific differences. These were most apparent at the end of the sixth period of water stress when osmotic potentials at full and zero turgor were significantly higher and bulk elastic modulus and relative water content at turgor loss point were significantly lower in E. globulus than in E. nitens. We conclude that the drought-tolerance responses of E. globulus make it a more suitable species than E. nitens for establishment on sites where moderate water stress is experienced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Nested Polymerase Chain Reaction Detection of Mycosphaerella spp. and Its Application to the Study of Leaf Disease in Eucalyptus Plantations.

ABSTRACT Mycosphaerella leaf disease (MLD) is a serious disease of two of the major eucalypt species grown in temperate regions worldwide, Eucalyptus globulus and E. nitens. More than 30 species of Mycosphaerella have been reported on eucalypts worldwide. Accurate, rapid, and early discrimination of Mycosphaerella spp. causing crown damage to E. globulus and E. nitens will assist the developmen...

متن کامل

Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance.

We evaluated drought resistance mechanisms in a drought-tolerant clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus globulus Labill. based on the responses to drought of some physiological, biophysical and morphological characteristics of container-grown plants, with particular emphasis on root growth and hydraulic properties. Water loss in excess of that supplied to the containers ...

متن کامل

Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity.

We compared the metabolic responses of leaves and roots of two Eucalyptus globulus Labill. clones differing in drought sensitivity to a slowly imposed water deficit. Responses measured included changes in concentrations of soluble and insoluble sugars, proline, total protein and several antioxidant enzymes. In addition to the general decrease in growth caused by water deficit, we observed a dec...

متن کامل

Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping.

A set of over 8000 Diversity Arrays Technology (DArT) markers was tested for its utility in high-resolution population and phylogenetic studies across a range of Eucalyptus taxa. Small-scale population studies of Eucalyptus camaldulensis, Eucalyptus cladocalyx, Eucalyptus globulus, Eucalyptus grandis, Eucalyptus nitens, Eucalyptus pilularis and Eucalyptus urophylla demonstrated the potential of...

متن کامل

Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus

Leaf-level photosynthetic processes and their environmental dependencies are critical for estimating CO2 uptake from the atmosphere. These estimates use biochemical-based models of photosynthesis that require accurate Rubisco kinetics. We investigated the effects of canopy position, elevated atmospheric CO2 [eC; ambient CO2 (aC)+240 ppm] and elevated air temperature (eT; ambient temperature (aT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 1996